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Current/flow-rate characteristic of an
electrospray with a small meniscus
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E. T. S. Ingenieros Aeronáuticos, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain

(Received 2 July 2003 and in revised form 2 June 2004)

A relation between the electric current and the flow rate of an electrospray operating in
the cone–jet mode is proposed for the case of a very small meniscus, a long stationary
jet, and a flow with important inertial effects. The finite size of the meniscus then
affects the bulk-to-surface current transfer process, though the meniscus is still much
larger than the drops of the spray. The result differs from the square-root law which
is well-established for large menisci or very viscous flows.

1. Introduction
In the cone–jet regime of electrostatic atomization, a meniscus of the liquid to

be sprayed is subjected to an electric field that induces electric charge at the liquid
surface. This causes an electric stress that strains the meniscus into a cone with a thin
jet emanating from its apex. In a classic analysis, Taylor (1964) showed that a conical
meniscus strained by an electric field is an exact equilibrium solution in the absence of
any flow, and used a balance of normal electric stress and surface tension to determine
the field around the cone as E = E

T
= O(γ /ε0R)1/2, where γ is the surface tension of

the liquid, R is the distance to the apex of the cone, and ε0 is the permittivity of
vacuum. Taylor’s analysis should be supplemented with an analysis of the flow and the
current transport in the cone-to-jet transition region and in the jet of the electrospray,
where the hydrostatic balance is not applicable. A brief summary of these regions
follows; further details can be found in Fernández de la Mora & Loscertales (1994),
Gañán-Calvo, Dávila & Barrero (1997) and Higuera (2003). Electric charge is carried
to the surface of the meniscus and the jet by conduction in the liquid, under the
action of the field which strains the meniscus. In combination with the component of
the field tangent to the surface, this surface charge generates an electric shear on the
liquid that is directed away from the meniscus and favours the observed flow. The
surface charge is convected by the flow it helps to generate, causing an additional
electric current. The sum of the conduction current in the liquid and the convection
current at its surface is a constant. The expressions for these two contributions to the
current in the axisymmetric configuration sketched in figure 1 are

Ib(x) = 2πK

∫ rs

0

Ei
xr dr and Is(x) = 2πσvsrs,

respectively, where K is the electric conductivity of the liquid, Ei
x is the axial (x)

component of the electric field in the liquid, rs(x) is the radius of the cross-section
of the surface, and vs is the velocity of the liquid at the surface. The conduction
current dominates in the meniscus, where the speed of the liquid and the density of
free-surface charge are small and decrease with increasing distance to the apex. The
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Figure 1. Definition sketch.

convection current dominates in the jet far downstream, where the radius rs and the
electric field decrease with streamwise distance. In between, there is a bulk-to-surface
current transfer region which determines the total current I = Ib + Is as a function of
the flow rate Q injected through the meniscus.

In many cases, the current transfer region is small compared with the conical
meniscus, which makes the structure of this region nearly independent of the
configuration of the electrospray system. In these conditions the electric current
often follows a universal scaling law, being proportional to the square root of the
flow rate and dependent only on physical properties of the liquid (Fernández de la
Mora & Loscertales 1994; Gañán-Calvo et al. 1997). In other cases, however, the
disparity of scales underlying the square-root law is not realized. These include recent
applications of electrostatic atomization in which multiple miniature menisci, each
in the range of tens of micrometres, are packed in a single device. The electrostatic
interaction between elements is then of prime importance and has been studied in
some detail (Rulison & Flagan 1993; Almekinders & Jones 1999; Regele et al. 2002;
Hubacz & Marijnissen 2003; Barrero 2004). The current/flow-rate characteristic of
each individual meniscus depends on the electric field prevailing in the current transfer
region, and does not necessarily follow a square-root law. Another case in point may
be the electrospraying of liquids of low electrical conductivity, which produces thick
jets and long transfer regions (Gomez & Tang 1994). The purpose of this paper is to
describe the bulk-to-surface current transfer process under a variety of electric field
conditions, in order to explore possible current/flow-rate characteristics of a range of
electrospray configurations.

2. Governing equations
The axisymmetric flow of the liquid obeys the Navier–Stokes equations. The electric

fields in the liquid and outside can be written in terms of electric potentials as Ei = ∇ϕi

and E = ∇ϕ, respectively, with ∇2ϕi = ∇2ϕ = 0.
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The following relations exist between the quantities pertaining to the liquid surface.
The density of free-surface charge, σ , determines the jump of the electric field across
the surface as (Landau & Lifshitz 1960)

σ = ε0

(
En − εEi

n

)
and Et = Ei

t , (2.1)

where Ei
n and En are the components normal to the surface of the electric field in the

liquid and outside, Ei
t and Et are the corresponding components of the fields tangent

to the surface, and ε is the dielectric constant of the liquid. The electric stresses
normal and tangent to the surface are (Landau & Lifshitz 1960; Saville 1997)

τ e
n = 1

2
ε0

(
E2

n − εEi2

n

)
+ 1

2
ε0(ε − 1)E2

t and τ e
t = σEt . (2.2)

The conservation equation for the surface charge in the axisymmetric configuration
of figure 1 is

dIs

dx
= 2πrsKEi

n

(
1 + r ′2

s

)1/2
, (2.3)

where the right-hand side is the rate of bulk-to-surface current transfer.
Much work has been devoted to elucidating the structure of the current transfer

region where bulk conduction current becomes surface convection current. Fernández
de la Mora & Loscertales (1994) identified the current transfer region with an electric
relaxation region around the apex of the cone where conduction fails to carry to the
surface the charge that would be needed to screen the liquid from the applied electric
field. From this condition they derive the result I ∼ (γKQ/ε)1/2. Additional estimates
have been worked out that take into account the pressure and viscous stresses at
the surface necessary to upset the surface tension–normal electric stress balance and
deform the surface away from a cone. Work on these lines began with the inertial
scaling of Fernández de la Mora et al. (1990). When the motion of the liquid is
dominated by viscosity, estimates of this kind suggest that the current transfer region
is never large compared with the largest of the electric relaxation region and another
region around the apex where the viscous stress becomes of the order of the surface-
tension stress (Higuera 2003). When the inertia of the liquid dominates, however, most
of the current transfer seems to occur in the jet, over a length that increases with the
flow rate (Gañán-Calvo et al. 1997; Gañán-Calvo 1999; Higuera 2003). The analysis
of the current transfer in these conditions has been carried out on the assumption
that the field outside the liquid decreases as the inverse of the square root of the
streamwise distance, as in Taylor’s solution, which is appropriate when the length
of the current transfer region is small compared with the characteristic size of the
meniscus Rm. This analysis is extended here to the opposite case when the length of
the current transfer region is large compared with Rm.

3. Orders of magnitude
The field away from the cone, which will enter the extended analysis, depends on

the specific configuration of the system in which the spray is generated. In some
of the pioneering experiments of Taylor, the meniscus lies on a horizontal metallic
plate and the electric field is due to a voltage V applied between this plate and
another parallel plate a distance L � Rm apart. The condition of matching of the
Taylor field around the apex with the uniform field between the plates is, in orders
of magnitude, E

T
(Rm) ∼ V/L, which determines the order of the required voltage as

V = O[(γRm/ε0)
1/2(L/Rm)]. A more quantitative analysis turns this estimate into an



242 F. J. Higuera

exact result, and experiments show that the cone–jet regime is realized only when the
voltage is in a narrow range around a value of this order.

In a variant of this configuration used extensively, the meniscus is at the end of a
long metallic needle of radius Rm held at a voltage V perpendicularly to a grounded
plate at a distance L from the needle. The field at a distance R from the end of a
needle is of order [V/ ln(L/Rm)]/R. Matching this field with the Taylor field E

T
for

R =O(Rm) requires V =O[(γRm/ε0)
1/2 ln(L/Rm)], a result often used in the analysis

of this configuration.
Assume that current transfer occurs in a region of the jet where the axial field

would be Ex0
(x) in the absence of the jet. (Hereafter x is measured from the apparent

apex of the cone.). The velocity of the liquid in the jet is v ≈ Q/πr2
s and the pressure

variation associated with this velocity is of order ρv2 = O(ρQ2/r4
s ), where ρ is the

density of the liquid. The electric stress normal to the surface is of order ε0E
2
n , from

(2.2). The condition that this electric stress should be of the same order as the pressure
variation gives En = O(ρ1/2Q/ε

1/2
0 r2

s ).
On the other hand, seen from a distance large compared with its radius, the

jet acts as a line of charge. It induces an axial field that can be approximated
by ln(rs/x)d(Enrs)/dx = O(Enrs/x) up to logarithmic factors (see, e.g., Ashley &
Landahl 1965 for a derivation of this result). The condition that this axial field
should be of the order of Ex0

, so that it can screen the liquid from Ex0
in the region

where conduction dominates and would lead to too large a current if Ex0
entered the

liquid, gives rs = O(ρ1/2Q/ε
1/2
0 Ex0

x).
The axial field needed in the liquid when conduction is responsible for at least

a fraction of the total current I is Ei
x = O(I/Kr2

s ) = O(ε0Ix2E2
x0

/ρKQ2). This field
increases with x if xEx0

(x) increases, and it becomes of the order of the outer field
Ex0

for x = O(xt ), with xt given by x2
t Ex0

(xt ) = ρKQ2/ε0I . Since Ei
x cannot be large

compared with Ex0
, conduction cannot account for the electric current I when x � xt ,

so that xt defines the characteristic length of the bulk-to-surface current transfer
region.

Insofar as the residence time of the flow in this region (tr = xt/v) is large
compared with the electric relaxation time te = ε0ε/K , the density of free-surface
charge is nearly equal to the equilibrium value σ = ε0En that screens the liquid
from En (i.e. εEi

n � En in (2.1); see Fernández de la Mora & Loscertales 1994;
Gañán-Calvo et al. 1997; Higuera 2003). This charge leads to a convection
current Is =2πσvrs = O(ε1/2

0 E3/2
x0

ρ1/2K3/2Q2/I 3/2), and the condition that Is = O(I )

in the current transfer region gives finally I = O(ε1/5
0 ρ1/5E3/5

x0
K3/5Q4/5), where Ex0

=
Ex0

(xt ).

Introducing the scaling factors R0 = (ε2
0γ /ρK2)1/3, Q0 = ε0γ /ρK , I0 = ε

1/2
0 γ /ρ1/2 and

E0 = I0/KR2
0 , and taking Ex0

(x) = A/xn, with A= O(γ 1/2Rn−1/2
m /ε

1/2
0 ) to match with

the Taylor field around the meniscus, the estimates above can be written as

I

I0

∼ (Q/Q0)
4−5n
5−4n

(Rm/R0)
3
2

1−2n
5−4n

, (3.1a)

xt

R0

∼
(

Rm

R0

)2 1−2n
5−4n

(
Q

Q0

) 3
5−4n

, (3.1b)

rs

R0

∼
(

Rm

R0

) 1
2

1−2n
5−4n

(
Q

Q0

) 2−n
5−4n

. (3.1c)
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These results apply when xt � Rm, which amounts to Q/Q0 � Rm/R0. On the other
hand, the flow rate cannot be arbitrarily large if a conical meniscus has to exist at
all. The pressure variations due to the flow in the meniscus are of order ρQ2/R4 at
a distance R from the apex. These pressure variations become of the order of the
surface tension and lead to a deformation of the surface away from a cone when
ρQ2/R4 ∼ γ /R, which defines the hydrodynamic region of Fernández de la Mora
et al. (1990), of characteristic size Rh =(ρQ2/γ )1/3 = R0(Q/Q0)

2/3. This region is small
compared with the size Rm of the meniscus only if Q/Q0 � (Rm/R0)

3/2.
The case n= 1/2 corresponds to a very large meniscus, for which the electric

field Ex0
is given by Taylor’s solution in the current transfer region and beyond

(Ex0
= O(A/x1/2)). The estimates (3.1) become independent of Rm/R0 for this case,

as was to be expected. The estimate of the current becomes I ∼ (γKQ)1/2, which
coincides with the result of Fernández de la Mora & Loscertales (1994) up to a factor
which is a function of ε. The length of the transfer region and the radius of the jet in
this region scale as Q/Q0 and (Q/Q0)

1/2, respectively, in agreement with the results
of Gañán-Calvo (1999) and Higuera (2003).

The case n= 0 corresponds to a meniscus lying on a metallic plate. Then I ∝ Q4/5 in
the range Rm/R0 � Q/Q0 � (Rm/R0)

3/2, which is at variance with the usual square-
root law. In the jet beyond the current transfer region, the conditions v ∼ Q/r2

s ,
σvrs ∼ I and ρv2r2

s ∼ σEx0
rsx, expressing the conservation of mass, current (which

is almost entirely convection current) and momentum (a balance of the acceleration
of the liquid and the electric shear), give

rs

R0

∼ (Q/Q0)
11/20

(Ex0
/E0)2/5(x/R0)1/4

, v ∼ Q

r2
s

, (3.2a)

σ

ε0E0

∼ (Ex0
/E0)

1/5(Q/Q0)
7/20

(x/R0)1/4
. (3.2b)

Solutions for other values of n are also of interest. The electric current ceases to be
an increasing function of the flow rate when n > 4/5, which includes the important
case n= 1 of a meniscus at the end of a long metallic needle. In this case the current
increases as the square root of the flow rate when xt � Rm, reaches a maximum of the
order of I0(Rm/R0)

1/2 at a flow rate of the order of Q0(Rm/R0), and then decreases, if
a solution exists at all.

For any n, the asymptotic estimates of this section imply that the surface-tension
stress is small compared with the pressure variation and the normal-electric stress in
a region of the jet that includes the current transfer region. The stationary solution
should become unstable when this region is sufficiently long, and the breakup of the
jet could then lead to drops with a charge higher than the Rayleigh limit.

4. Numerical results
The order of magnitude estimates of the previous section have been backed with

numerical computations for n= 0. The Navier–Stokes equations for the flow in the
liquid, the Laplace equations for the electric potentials in the liquid and outside,
and the conservation equation (2.3) for the density of free-surface charge have been
solved with boundary conditions at the liquid surface expressing the balance of
surface tension, pressure, viscous stresses and electric stresses (given by (2.2)), and
the electrostatic conditions (2.1). The condition ϕ = 0 is imposed at the metallic plate
holding the meniscus (see figure 1). The liquid is assumed to flow through a hole of
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Figure 2. The solid curve gives the dimensionless current as a function of the dimensionless
flow rate. The dashed curve is I/I0 = 1.23 (Q/Q0)

1/2. The circles give the current computed for
different values of the flow rate in the absence of a uniform far field. Inset: log-log plot. The
dashed lines at the left and right in the inset have slopes 1/2 and 4/5, respectively.

radius Rm drilled in this plate, with the meniscus attached at the rim of the hole.
Uniform radial velocity and electric field are imposed at the inlet (r < Rm). These
are only approximate conditions. More accurate conditions should involve the flow
and the electric field in the feeding pipe, but these are not expected to affect the
current transfer region much because of the large contraction experienced by the flow
between the feeding pipe and the current transfer region.

Additional boundary conditions should be specified at the far electrode (extractor)
in front of the meniscus. The distance L between the two electrodes may be large
compared with the length of the current transfer region, which makes for intensive
computations when the whole system is simulated. Here, to decrease the numerical
burden and gain some generality, a solution is computed in a reduced domain
covering only the meniscus and the current transfer region. For this purpose, the
asymptotic results (3.2), along with ∂ϕ/∂x → Ex0

(with Ex0
a given constant), are used

as boundary conditions at the downstream boundary.
The problem can be written in non-dimensional form using the scaling factors

introduced above (3.1). The non-dimensional problem contains the four parameters

Re =
ρQ0

µR0

=
ρ1/3ε

1/3
0 γ 2/3

µK1/3
, ε,

Rm

R0

,
Ex0

E0

, (4.1)

where µ is the viscosity of the liquid. (The last two parameters should satisfy the order
of magnitude relation Ex0

/E0 = O(R0/Rm)1/2 for a cone–jet to exist.) The solution of
the problem determines I/I0 as a function of Q/Q0 and these four parameters.

The computed dimensionless current is plotted in figure 2 as a function of the
dimensionless flow rate for Re= 0.5, ε = 50, Rm/R0 = 20, and Ex0

/E0 = 0.07. As can
be seen, the current departs from a square-root law (dashed curve) when the flow rate
increases, and seems to tend to the predicted 4/5 law for large flow rates. The position
of the cross-over point xc at which Is = Ib, which is an indicator of the current transfer
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Figure 3. Cross-over point at which Is = Ib as a function of the flow rate (solid).
The dashed curve is xc/R0 = 3.25 (Q/Q0)

3/5.

progress, is plotted in figure 3 as a function of the flow rate. The cross-over point
shifts downstream with increasing flow rate and approaches the 3/5 law predicted by
(3.1b) [xt/R0 ∼ (Rm/R0)

2/5(Q/Q0)
3/5] for the largest values of the flow rate. Inspection

of the numerical results shows, however, that xc is never sufficiently far in the jet
to assume that most of the current transfer occurs under a constant Ex0

in these
computations. The flow rate cannot be increased much above the values of figures 2
and 3 because the combined effect of the dynamic pressure variation at the beginning
of the jet and the departure of the electric field from the Taylor field around the
rim of the injecting hole is already affecting the whole meniscus, which is nowhere
a cone. This difficulty is a consequence of the value of the parameter Rm/R0 used
in the computations, which is smaller than in real applications. Increasing Rm/R0

would increase the range of admissible flow rates at the price of more demanding
computations, but the computed results already show a clear departure of the current
from a square-root law.

It could be argued that part of this departure might be due to the meniscus
never being a Taylor cone. In fact, the coefficient of the dashed curve in
figure 2, I/I0 = 1.23 (Q/Q0)

1/2, is smaller that the coefficient 2.6 proposed by Gañán-
Calvo (1999). To assess the importance of this effect, additional computations have
been carried out with the far-field condition ∂ϕ/∂x → Ex0

(a constant) replaced by a
far field given by Taylor’s solution (E

T
=O(1/R1/2)), and the downstream asymptotic

conditions (3.2) changed accordingly (see Higuera 2003 for the modified form of (3.2)
when Ex0

∼ A/x1/2). This far field can be realized in principle using a far electrode of
the appropriate shape, though it cannot be a flat plate, for which no cone–jet would
exist without a uniform Ex0

. The current computed with the modified far field is
represented by circles in figure 2. Solutions could not be extended to very large flow
rates in the absence of a uniform field but, as can be seen, the current nearly follows
a square-root law even though the flow is affected by the finite size of the meniscus.

5. Conclusions
Order of magnitude estimates and numerical computations have been used to

analyse the bulk-to-surface current transfer region of an electrospray when the length
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of this region is not small compared with the size of the meniscus. The electric
current is predicted to increase faster/slower than the square root of the flow rate
when the electric field in the current transfer region decreases with streamwise distance
less/more rapidly than the Taylor field. Estimates of the length of the current transfer
region and the radius of the jet in this region have been also worked out. Power-law
scalings for large flow rates break down when the electric field decreases sufficiently
rapidly with streamwise distance. This result could be hinting at a maximum flow
rate, or a maximum current, above which a solution ceases to exist in some conditions
of interest.
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BFM2001-3860-C02-02 and DPI2002–4550–C07-5.
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